量子物理史话-第9章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
非是波振动的频繁程度而已。如果频率高的话,便是说波振动得频繁一点,那么照理说频繁振动的光波应该打击出更多数量的电子才对啊。然而所有的实验都指向相反的方向:光的强度决定电子数目,光的频率决定能否打出电子。这不是开玩笑吗?
想象一个猎人去打兔子,兔子都躲在地下的洞里,轻易不肯出来。猎人知道,对于狡猾的兔子来说,可能单单敲锣打鼓不足以把它吓出来,而一定要采用比如说水淹的手法才行。就是说,采用何种手法决定了能不能把兔子赶出来的问题。再假设本地有一千个兔子洞,那么猎人有多少助手,可以同时向多少洞穴行动这个因素便决定了能够吓出多少只兔子的问题。但是,在实际打猎中,这个猎人突然发现,兔子出不出来不在于采用什么手法,而是有多少助手同时下手。如果只对一个兔子洞行动,哪怕天打五雷轰都没有兔子出来。而相反,有多少兔子被赶出来,这和我们的人数没关系,而是和采用的手法有关系。哪怕我有一千个人同时对一千个兔子洞敲锣打鼓,最多只有一个兔子跳出来。而只要我对一个兔子洞灌水,便会有一千只兔子四处乱窜。要是画漫画的话,这个猎人的头上一定会冒出一颗很大的汗珠。
科学家们发现,在光电效应问题上,他们面临着和猎人一样的尴尬处境。麦克斯韦的电磁理论在光电上显得一头雾水,不知怎么办才好。实验揭露出来的事实是简单而明了的,多次的重复只有更加证实了这个基本事实而已,但这个事实却和理论恰好相反。那么,问题出在哪里了呢?是理论错了,还是我们的眼睛在和我们开玩笑?
问题绝不仅仅是这些而已。种种迹象都表明,光的频率和打出电子的能量之间有着密切的关系。每一种特定频率的光线,它打出的电子的能量有一个对应的上限。打个比方说,如果紫外光可以激发出能量达到20电子伏的电子来,换了紫光可能就最多只有10电子伏。这在波动看来,是非常不可思议的。而且,根据麦克斯韦理论,一个电子的被击出,如果是建立在能量吸收上的话,它应该是一个连续的过程,这能量可以累积。也就是说,如果用很弱的光线照射金属的话,电子必须花一定的时间来吸收,才能达到足够的能量从而跳出表面。这样的话,在光照和电子飞出这两者之间就应该存在着一个时间差。但是,实验表明,电子的跃出是瞬时的,光一照到金属上,立即就会有电子飞出,哪怕再暗弱的光线,也是一样,区别只是在于飞出电子的数量多少而已。
咄咄怪事。
对于可怜的物理学家们来说,万事总是不遂他们的愿。好不容易有了一个基本上完美的理论,实验总是要搞出一些怪事来搅乱人们的好梦。这个该死的光电效应正是一个令人丧气和扫兴的东西。高雅而尊贵的麦克斯韦理论在这个小泥塘前面大大地犯难,如何跨越过去而不弄脏自己那华丽的衣裳,着实是一桩伤脑筋的事情。
然而,更加不幸的是,人们总是小看眼前的困难。有着洁癖的物理学家们还在苦思冥想着怎样可以把光电现象融入麦克斯韦理论之中去而不损害它的完美,他们却不知道这件事情比他们想象得要严重得多。很快人们就会发现,这根本不是袍子干不干净的问题,这是一个牵涉到整个物理体系基础的根本性困难。不过在当时,对于这一点,没有最天才、最大胆和最富有锐气的眼光,是无法看出来的。
不过话又说回来,科学上有史以来最天才、最大胆和最富有锐气的人物,恰恰生活在那个时代。
1905年,在瑞士的伯尔尼专利局,一位26岁的小公务员,三等技师职称,留着一头乱蓬蓬头发的年轻人把他的眼光在光电效应的这个问题上停留了一下。这个人的名字叫做阿尔伯特•;爱因斯坦。
于是在一瞬间,闪电划破了夜空。
暴风雨终于就要到来了。
二
位于伯尔尼的瑞士专利局如今是一个高效和现代化的机构,为人们提供专利、商标的申请和查询服务。漂亮的建筑和完善的网络体系使得它也和别的一些大公司一样,呈现出一种典型的现代风格。作为纯粹的科学家来说,一般很少会和专利局打交道,因为科学无国界,也没有专利可以申请。科学的大门,终究是向全世界开放的。
不过对于科学界来说,伯尔尼的专利局却意味着许多。它在现代科学史上的意义,不啻于伊斯兰文化中的麦加城,有一种颇为神圣的光辉在里边。这都是因为在100年前,这个专利局“很有眼光”地雇佣了一位小职员,他的名字就叫做阿尔伯特•;爱因斯坦。这个故事再一次告诉我们,小庙里面有时也会出大和尚。
1905年,对于爱因斯坦来讲,坏日子总算都已经过去得差不多了。那个为了工作和生计到处奔波彷徨的年代已经结束,不用再为自己的一无所成而自怨自艾不已。专利局提供给了他一个稳定的职位和收入,虽然只是三等技师——而他申请的是二等——好歹也是个正式的公务员了。三年前父亲的去世给爱因斯坦不小的打击,但他很快从妻子那里得到了安慰和补偿。塞尔维亚姑娘米列娃•;玛利奇(Mileva Marec)在第二年(1903)答应嫁给这个常常显得心不在焉的冒失鬼,两人不久便有了一个儿子,取名叫做汉斯。
现在,爱因斯坦每天在他的办公室里工作8个小时,摆弄那堆形形色色的专利图纸,然后他赶回家,推着婴儿车到伯尔尼的马路上散步。空下来的时候,他和朋友们聚会,大家兴致勃勃地讨论休谟,斯宾诺莎和莱辛。心血来潮的时候,爱因斯坦便拿出他的那把小提琴,给大家表演或是伴奏。当然,更多的时候,他还是钻研最感兴趣的物理问题,陷入沉思的时候,往往废寝忘食。
1905年是一个相当神秘的年份。在这一年,人类的天才喷薄而出,像江河那般奔涌不息,卷起最震撼人心的美丽浪花。以致于今天我们回过头去看,都不禁要惊叹激动,为那样的奇迹咋舌不已。这一年,对于人类的智慧来说,实在要算是一个极致的高峰,在那段日子里谱写出来的美妙的科学旋律,直到今天都让我们心醉神摇,不知肉味。而这一切大师作品的创作者,这个攀上天才顶峰的人物,便是我们这位伯尔尼专利局里的小公务员。
还是让我们言归正传,1905年3月18日,爱因斯坦在《物理学纪事》(Annalen derPhysik)杂志上发表了一篇论文,题目叫做《关于光的产生和转化的一个启发性观点》(A Heuristic Interpretation of the Radiation and Transformation of Light),作为1905年一系列奇迹的一个开始。这篇文章是爱因斯坦有生以来发表的第六篇正式论文(第一篇是1901年发表的关于毛细现象的东东,用他自己的话来说,“毫无价值”),而这篇论文将给他带来一个诺贝尔奖,也开创了属于量子论的一个新时代。
爱因斯坦是从普朗克的量子假设那里出发的。大家都还记得,普朗克假设,黑体在吸收和发射能量的时候,不是连续的,而是要分成“一份一份”,有一个基本的能量单位在那里。这个单位,他就称作“量子”,其大小则由普朗克常数h来描述。如果我们从普朗克的方程出发,我们很容易推导一个特定辐射频率的“量子”究竟包含了多少能量,最后的公式是简单明了的:
E = hν
其中E是能量,h是普朗克常数,ν是频率。哪怕小学生也可以利用这个简单的公式来做一些计算。比如对于频率为10的15次方的辐射,对应的量子能量是多少呢?那么就简单地把10^15乘以h=6。6×10^…34,算出结果等于6。6×10^19焦耳。这个数值很小,所以我们平时都不会觉察到非连续性的存在。
爱因斯坦阅读了普朗克的那些早已被大部分权威和他本人冷落到角落里去的论文,量子化的思想深深地打动了他。凭着一种深刻的直觉,他感到,对于光来说,量子化也是一种必然的选择。虽然有天神一般的麦克斯韦理论高高在上,但爱因斯坦叛逆一切,并没有为之而止步不前。相反,他倒是认为麦氏的理论只能对于一种平均情况有效,而对于瞬间能量的发射、吸收等等问题,麦克斯韦是和实验相矛盾的。从光电效应中已经可以看出端倪来。
让我们再重温一下光电效应和电磁理论的不协调之处:
电磁理论认为,光作为一种波动,它的强度代表了它的能量,增强光的强度应该能够打击出更高能量的电子。但实验表明,增加光的强度只能打击出更多数量的电子,而不能增加电子的能量。要打击出更高能量的电子,则必须提高照射光线的频率。
提高频率,提高频率。爱因斯坦突然灵光一闪,E = hν,提高频率,不正是提高单个量子的能量吗?更高能量的量子能够打击出更高能量的电子,而提高光的强度,只是增加量子的数量罢了,所以相应的结果是打击出更多数量的电子。一切在突然之间,显得顺理成章起来。
爱因斯坦写道:“……根据这种假设,从一点所发出的光线在不断扩大的空间中的传播时,它的能量不是连续分布的,而是由一些数目有限的,局限于空间中某个地点的“能量子”(energy quanta)所组成的。这些能量子是不可分割的,它们只能整份地被吸收或发射。”
组成光的能量的这种最小的基本单位,爱因斯坦后来把它们叫做“光量子”(lightquanta)。一直到了1926年,美国物理学家刘易斯(G。N。Lewis)才把它换成了今天常用的名词,叫做“光子”(photon)。
从光量子的角度出发,一切变得非常简明易懂了。频率更高的光线,比如紫外光,它的单个量子要比频率低的光线含有更高的能量(E = hν),因此当它的量子作用到金属表面的时候,就能够激发出拥有更多动能的电子来。而量子的能量和光线的强度没有关系,强光只不过包含了更多数量的光量子而已,所以能够激发出更多数量的电子来。但是对于低频光来说,它的每一个量子都不足以激发出电子,那么,含有再多的光量子也无济于事。
我们把光电效应想象成一场有着高昂入场费的拍卖。每个量子是一个顾客,它所携带的能量相当于一个人拥有的资金。要进入拍卖现场,每个人必须先缴纳一定数量的入场费,而在会场内,一个人只能买一件物品。
一个光量子打击到金属表面的时候,如果它带的钱足够(能量足够高),它便有资格进入拍卖现场(能够打击出电子来)。至于它能够买到多好的物品(激发出多高能量的电子),那要取决于它付了入场费后还剩下多少钱(剩余多少能量)。频率越高,代表了一个人的钱越多,像紫外线这样的大款,可以在轻易付清入场费后还买的起非常贵的货物,而频率低一点的光线就没那么阔绰了。
但是,一个人有多少资金,这和一个“代表团”能够买到多少物品是没有关系的。能够买到多少数量的东西,这只和“代表团”的人数有关系(光的强度),而和每一个人有多少钱(光的频率)没关系。如果我有一个500人的代表团,每个人都有足够的钱入场,那么我就能买到500样货品回来,而你一个人再有钱,你也只能买一样东西(因为一个人只能买一样物品,规矩就是这样的)。至于买到的东西有多好,那是另一回事情。话又说回来,假如你一个代表团里每个人的钱太少,以致付不起入场费,那哪怕你人数再多,也是一样东西都买不到的,因为规矩是你只能以个人的身份入场,没有连续性和积累性,大家的钱不能凑在一起用。
爱因斯坦推导出的方程和我们的拍卖是一个意思:
1/2 mv^2 = hν– P
1/2 mv^2是激发出电子的最大动能,也就是我们说的,能买到“多好”的货物。hν是单个量子的能量,也就是你总共有多少钱。P是激发出电子所需要的最小能量,也就是“入场费”。所以这个方程告诉我们的其实很简单:你能买到多好的货物取决于你的总资金减掉入场费用。
这里面关键的假设就是:光以量子的形式吸收能量,没有连续性,不能累积。一个量子激发出一个对应的电子。于是实验揭示出来的效应的瞬时性难题也迎刃而解:量子作用本来就是瞬时作用,没有积累的说法。
但是,大家从这里面嗅到了些什么没有?光量子,光子,光究竟是一种什么东西呢?难道我们不是已经清楚地下了结论,光是一种波动吗?光量子是一个什么概念呢?
仿佛宿命一般,历史在