3A电子书 > 名著电子书 > 清史稿 >

第151章

清史稿-第151章

小说: 清史稿 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  周日一万分。时则二十四,刻则九十六,刻下分则一千四百四十,秒则八万六千四百。

  周岁三百六十五日二四二一八七五。

  纪法六十。

  宿法二十八。

  太阳每日平行三千五百四十八秒,小馀三三0五一六九。

  最卑岁行六十一秒,小馀一六六六六。

  最卑日行十分秒之一又六七四六九。

  本天半径一千万。

  本轮半径二十六万八千八百一十二。

  均轮半径八万九千六百零四。

  宿度见天文志。

  岁差五十一秒。

  各省及蒙古北极高度、东西偏度、见天文志。

  黄赤大距,二十三度二十九分三十秒。

  最卑应,七度十分十一秒十微。

  气应,七日六五六三七四九二六。

  宿应,五日六五六三七四九二六。

  日干,甲、乙、丙、丁、戊、己、庚、辛、壬、癸。

  支,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。

  宿名,角、亢、氐、房、心、尾、箕、斗、牛、女、虚、危、室、壁、奎、娄、胃、昂、毕、参、觜、井、鬼、柳、星、张、翼、轸。

  时名,从十二支各分初、正。起子正,尽夜子初。

  推日躔法求天正冬至,置周岁,以距元年数减一得积年乘之,得中积分,加气应得通积分,上考往古,则减气应得通积分。其日满纪法去之,馀为天正冬至日分。上考往古,则以所馀转与纪法相减,馀为天正冬至日分。自初日起甲子,其小馀以刻下分通之,如法收为时刻。周日一万分为一率,小馀为二率,刻下分为三率,求得四率为时分。满六十分收为一时,十五分收为一刻。初时起子正,中积分加宿应,满宿法去之,为天正冬至值宿日分,初日起角宿。

  求平行,以周日为一率,太阳每日平行为二率,天正冬至小馀与周日相减馀为三率,求得四率为年根秒数。又置太阳每日平行,以本日距冬至次日数乘之,得数为秒。与年根相并,以宫度分收之,得平行。

  求实行,置最卑岁行,以积年乘之。又置最卑日行,以距冬至次日数乘之。两数相并,加最卑应,上考则减最卑应。以减平行为引数。用平三角形,以本轮半径三分之二为对正角之边,以引数为一角,求得对角之边倍之。又求得对又一角之边,与本天半径相加减。引数三宫至八宫则相加,九宫至二宫则相减。复用平三角形,以加倍之数为小边,加减本天半径之数为大边,正角在两边之中,求得对小边之角为均数。置平行以均数加减之,引数初宫至五宫为加,六宫至十一宫为减。得实行。求宿度,以积年乘岁差,得数加甲子法元黄道宿度,为本年宿钤,以减实行,馀为日躔宿度。若实行不及减宿钤,退一宿减之。

  求纪日值宿,置距冬至次日数,加冬至,日满纪法去之。初日起甲子,加冬至值宿,日满宿法去之。初日起角宿,得纪日值宿。

  求节气时刻,日躔初宫丑,星纪。初度为冬至,十五度为小寒。一宫子,元枵。初度为大寒,十五度为立春。二宫亥,娵訾。初度为雨水,十五度为惊蛰。三宫戌,降娄。初度为春分,十五度为清明。四宫酉,大梁。初度为穀雨,十五度为立夏。五宫申,实沈。初度为小满,十五度为芒种。六宫未,鹑首。初度为夏至,十五度为小暑。七宫午,鹑火。初度为大暑,十五度为立秋。八宫巳,鹑尾。初度为处暑,十五度为白露。九宫辰,寿星。初度为秋分,十五度为寒露。十宫卯,大火。初度为霜降,十五度为立冬。十一宫寅,析木。初度为小雪,十五度为大雪。皆以子正日躔未交节气宫度者,为交节气本日;已过节气宫度者,为交节气次日。乃以本日实行与次日实行相减为一率,每日刻下分为二率,本日子正实行与节气宫度相减为三率,求得四率为距子正后之分数,乃以时刻收之,即得节气初正时刻。如实行適与节气宫度相符而无馀分,即为子正初刻。求各省节气时刻,皆以京师为主,视偏度加减之。每偏一度,加减时之四分。偏东则加,偏西则减。推节气用时法,以交节气本日均数变时为均数时差,反其加减。又以半径为一率,黄赤大距馀弦为二率,本节气黄道度正切为三率,求得四率为赤道正切。检表得度,与黄道相减,馀变时为升度时差。二分后为加,二至后为减。皆加减节气时刻,为节气用时。求距纬度,以本天半径为一率,黄赤大距度之正弦为二率,实行距春秋分前后度之正弦为三率,实行初宫初度至二宫末度,与三宫相减,馀为春分前;三宫初度至五宫末度,则减去三宫,为春分后。六宫初度至八宫末度,与九宫相减,馀为秋分前;九宫初度至十一宫末度,则减去九宫,为秋分后。求得四率为正弦,检表得距纬度。实行三宫至八宫,其纬在赤道北;九宫至二宫,其纬在赤道南。

  求日出入昼夜时刻,以本天半径为一率,北极高度之正切为二率,本日距纬度之正切为三率,求得四率为正弦,检表得日出入在卯酉前后赤道度。变时,一度变时之四分,凡言变时皆仿此。为距卯酉分。以加减卯酉时,即得日出入时刻。春分前、秋分后,以加卯正为日出,减酉正为日入。春分后、秋分前,以减卯正为日出,加酉正为日入。又倍距卯酉分,以加减半昼分,得昼夜时刻。春分后以加得昼刻,以减得夜刻,秋分后反是。

  月离用数
  太阴每日平行四万七千四百三十五秒,小馀0二一一七七。

  太阴每时四刻。平行一千九百七十六秒,小馀四五九二一五七。

  月孛即最高,每日行四百0一秒,小馀0七七四七七。

  正交每日平行一百九十秒,小馀六四。

  本轮半径五十八万。

  均轮半径二十九万。

  负圈半径七十九万七千。

  次轮半径二十一万七千。

  次均轮半径一十一万七千五百。

  朔、望黄白大距四度五十八分三十秒。

  两弦黄白大距五度一十七分三十秒。

  黄白大距中数五度0八分。

  黄白大距半较九分三十秒。

  太阴平行应一宫0八度四十分五十七秒十六微。

  月孛应三宫0四度四十九分五十四秒0九微。

  正交应六宫二十七度十三分三十七秒四十八微。

  推月离法求天正冬至,同日躔。

  求太阴平行,置中积分,加气应详日躔。小馀,不用日,下同。减天正冬至小馀,得积日。上考则减气应小馀,加天正冬至小馀。与太阴每日平行相乘,满周天秒数去之,馀数收为宫度分。以加太阴平行应,得太阴年根。上考则减,又置太阴每日平行,以距天正冬至次日数乘之,得数为秒。以宫度分收之,与年根相并,满十二宫去之。为太阴平行。

  求月孛行,以积日见前条,下同。与月孛每日行相乘,满周天秒数去之,馀数收为宫度分。以加月孛应,得月孛年根。上考则减。又置月孛每日行以距天正冬至次日数乘之,得数为秒,以宫度分收之,与年根相并,满十二宫去之。为月孛行。

  求正交平行,以积日与正交每日平行相乘,满周天秒数去之,馀数收为宫度分,以减正交应,正交应不足减者,加十二宫减之。得正交年根。上考则加。又置正交每日平行,以距天正冬至次日数乘之,得数为秒,以宫度分收之,以减年根,年根不足减者,加十二宫减之。为正交平行。

  求用时太阴平行,以本日太阳均数变时,详日躔。得均数时差。均数加者,时差为减;均数减者,时差为加。又以本日太阳黄、赤经度详日躔。相减馀数变时,得升度时差。二分后为加,二至后为减。乃以两时差相加减,为时差总。两时差加减同号者,则相加为总,加者仍为加,减者仍为减。加减异号者,则相减为总,加数大者为加,减数大者为减。化秒,与太阴每时平行相乘为实,以一度化秒为法除之,得数为秒,以度分收之,得时差行。以加减太阴平行,时差总为加者则减,减者则加。为用时太阴平行。

  求初实行,置用时太阴平行,减去月孛行,得引数。用平三角形,以本轮半径之半为对正角之边,以引数为一角,求得对角之边三因之。又求得对又一角之边,与本天半径相加减。引数九宫至二宫相加,三宫至八宫相减。复用平三角形,以三因数为小边,加减本天半径数为大边,正角在两边之中,求得对小边之角为初均数,★求得对正角之边。即次轮最近点距地心之线。乃置用时太阴平行,以初均数加减之,引数初宫至五宫为减,六宫以后为加。为初实行。

  求白道实行,置初实行,减本日太阳实行得次引。即距日度。用平三角形,以次轮最近点距地心线为一边,倍次引之通弦本天半径为一率,次引之正弦为二率,次轮半径为三率,求得四率倍之即通弦。为一边;以初均数与引数减半周之度引数不及半周,则与半周相减,如过半周,则减去半周。相加,又以次引距象限度次引不及象限,则与象限相减;如过象限及过三象限,则减去象限及三象限,用其馀;如过二象限,则减去二象限,馀数仍与象限相减,为次引距象限度。加减之,初均数减者,次引过象限或过三象限则相加,不过象限或过二象限则相减。初均数加者反是。为所夹之角,若相加过半周,则与全周相减,用其馀为所夹之角。若相加適足半周或相减无馀,则无二均数。若次引为初度,或適足半周,亦无二均数。求得对通弦之角为二均数,如无初均数,以次轮心距地心为一边,次轮半径为一边;次引倍数为所夹之角,次引过半周者,与全周相减,用其馀;在最高为所夹之内角,在最卑为所夹之外角,求得对次轮半径之角为二均数。随定其加减号。以初均数与均轮心距最卑之度相加,为加减泛限。泛限適足九十度,则二均加减与初均同。如泛限不足九十度,则与九十度相减,馀数倍之,为加减定限。初均减者,以次引倍度;初均加者,以次引倍度减全周之馀数,皆与定限较。如泛限过九十度者,减去九十度,馀数倍之,为加减定限。初均加者,以次引倍度;初均减者,以次引倍度减全周之馀数,皆与定限较。并以大于定限,则二均之加减与初均同;小于定限者反是。★求得对角之边,为次均轮心距地心线。又以此线及次引,用平三角形,以次均轮心距地为一边,次均轮半径为一边,次引倍度为所夹之角,次引过半周者,与全周相减,用其馀。求得对次均轮半径之角为三均数,随定其加减号。次引倍度不及半周为加,过半周为减。乃以二均数与三均数相加减,为二三均数。两均数同号则相加,异号则相减。以加减初实行,两均数同为加者仍为加,同为减者仍为减。一为加一为减者,加数大为加,减数大为减。为白道实行。

  求黄道实行,用弧三角形,以黄白大距中数为一边,大距半较为一边,次引倍度为所夹之角,次引过半周与全周相减,用其馀。求得对角之边为黄白大距,并求得对半较之角为交均。以交均加减正交平行,次引倍度不及半周为减,过半周为加。得正交实行。又加减六宫为中交实行,置白道实行,减正交实行,得距交实行。以本天半径为一率,黄白大距之馀弦为二率,距交实行之正切为三率,求得四率为黄道之正切。检表得度分,与距交实行相减,馀为升度差,以加减白道实行,距交实行不过象限,或过二象限为减,过象限及过三象限为加。为黄道实行。

  求黄道纬度,以本天半径为一率,黄白大距之正弦为二率,距交实行之正弦为三率,求得四率为正弦。检表得黄道纬度,距交实行初宫至五宫为黄道北,六宫至十一宫为黄道南。

  求四种宿度,依日躔求宿度法,求得本年黄道宿钤。以黄道实行、月孛行及正交、中交实行各度分视其足减宿钤内某宿则减之,馀为四种宿度。

  求纪日值宿,同日躔。

  求交宫时刻,以太阴本日实行与次日实行相减未过宫为本日,已过宫为次日。馀为一率,刻下分为二率,太阴本日实行不用宫。与三十度相减馀为三率,求得四率为距子正分数。如法收之,得交宫时刻。

  求太阴出入时刻,以本日太阳黄道经度求其相当赤道经度。又用弧三角形,以太阴距黄极为一边,黄极距北极为一边,即黄赤大距。太阴距冬至黄道经度为所夹之外角,过半周者与全周相减,用其馀。求得对边为太阴距北极度。与九十度相减,得赤道纬度。不及九十度者,与

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的